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Abstract 

An incommensura te  phase with one-d imens iona l  
(1 D) incommensura te  composite  structure newly dis- 
covered in an A1-Cu-Fe  alloy coexists with the struc- 
turally related commensura te  phase. Both of  them 
can be descr ibed as a phason-defected 1 D fictitious 
quasicrystal.  The 1D quasicrystal  is obtained by cut- 
ting a s ix-dimensional  (6D) crystal with physical  
space. With the increase of  a part icular  l inear  phason  
strain, the section of  the 6D crystal transfers firstly 
to the incommensura te  phase and then to the com- 
mensurate  phase.  

1. Introduction 

There are different types of  incommensura te  struc- 
tures, for example ,  incommensura te  modula ted  struc- 
ture (de Wolff, 1974), incommensura te  composi te  
structure (Janner  & Janssen,  1980) and quas iper iodic  
structure (Shechtman,  Blech, Gratias & C a h n  1984). 

* This project is supported by the National Natural Science 
Foundation of China. 

They can easily be dis t inguished one from another  
by means  of  diffraction data. The diffraction peaks 
of  an incommensura te  modula ted  structure can be 
divided into two groups: main  peaks and satellite 
peaks. The main  peaks form a periodic lattice that 
corresponds to the average structure and each main  
peak is accompanied  by satellite peaks. The incom- 
mensurate  composite  structure consists of  two or 
more substructures. Each of  them gives an indepen-  
dent set of  periodic diffraction peaks to form the 
major  reflections. The minor  reflections originate 
from the mutua l  interact ion among different substruc- 
tures. In this sense, both incommensura te  modula ted  
structures and incommensura te  composite structures 
are to some extent related to three-dimensional  (3D) 
periodicity. The quasicrystal  possesses quasiper iodic-  
ity in both real and reciprocal spaces that is not related 
to 3D periodici ty (Schechtman et al., 1984). Thus far, 
the incommensura te  modula ted  structure, the incom- 
mensurate  composite  structure and the quasicrystal  
structure are recognized as completely different 
incommensura te  structures and no informat ion  about  
the structural re lat ionship among them has been 
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reported. However, they do have some similarity, 
for instance, in the incommensurate-commensurate 
phase transformation. A continuous incommensu- 
rate-commensurate phase transformation may occur 
for an incommensurate modulated structure during 
an increase of temperature and for an incommensu- 
rate composite crystal during a change of composi- 
tion. An almost continuous quasicrystalline-crystal- 
line phase transformation has also been observed and 
interpreted by introducing a particular linear phason 
strain (Li, Pan, Tao, Hui, Mai, Chen & Cai, 1989). 
In addition, some electron diffraction patterns 
(EDPs) of a newly discovered one-dimensional (1D) 
incommensurate composite structure (Cheng, Hui & 
Li, 1991) have some similarity with those of phason- 
defected quasicrystals. This led us to investigate the 
structural relationship between 1D incommensurate 
composite structure and 1D quasicrystal structure. In 
the following, firstly, the newly discovered 1D incom- 
mensurate composite structure (the tr' phase) and its 
coexisting commensurate structure (the tr phase) in 
the A1-Cu-Fe alloy will be introduced. Secondly, the 
relation to the fictitious 1D quasicrystal is discussed. 
Then the six-dimensional (6D) periodic structure that 
related to the tr phase, the tr' phase and the 1D 
quasicrystal is derived. Finally, it will be shown that 
both the or and tr' phases can be treated as phason- 
defected 1D quasiperiodic structures. 

2. The o" and o" phases 

The tr phase is a newly discovered tetragonal phase 
in rapidly quenched m177Cu10Fe13 and m173Cu18Fe 9 
alloys (Cheng et al., 1991). The lattice parameters are 
ao = 9.07, Co = 21.9 A and the approximate composi- 
tion is AlsoCusFe~5. The space group, determined by 
combining conventional and convergent-beam elec- 
tron diffraction, is I4 /mmm.  Fig. l (a)  gives a set of 
selected-area electron diffraction patterns (EDPs) 
taken from different zone axes covering an orienta- 
tional triangle. The tr phase coexists with a 1D incom- 
mensurate composite phase (tr' phase) that also has 
point-group symmetry of 4/rnmm. In the EDPs for 
the o" phase (Figs. 2a, b,c) the distance between two 
adjacent diffraction spots along the c* direction does 
not remain constant. This indicates that the crystal 
structure is incommensurate and the incommensu- 
ration occurs along the fourfold axis. All diffraction 
spots can be indexed with four indices h, k, l~, /2. 
Hence, the tr' phase was determined as a 1D incom- 
mensurate composite crystal consisting of two inter- 
penetrating substructures with sublattice parameters 
a~= ao, c~--~Co=3.14]~ (substructure I) and a2 = 
2-1/2ao, c2=3 .71~  (substructure II) respectively 
(Cheng et al., 1991). However, the relation between 
Fig. 2(a) and the [100] zone-axis pattern in Fig. l (a)  
is similar to the transformation from a phason- 

defected quasicrystal to an approximate crystal struc- 
ture. An evident deviation of the former from the 
latter is that in Fig. 2(a) the diffraction spots are no 
longer aligned along straight lines running from bot- 
tom right to top left and from bottom left to top right. 
In addition, the deviation of the positions of spots in 
Fig. 2(a) from those of the [100] pattern in Fig. l (a)  
is larger for weaker spots and vice versa. This is similar 
to the peak shift of a phason-defected quasicrystal 
(Lubensky, Socolar, Steinhardt, Bancel & Heiney, 
1986; Bancel & Heiney, 1986; Socolar & Wright, 
1987). Furthermore, the deviation, which is different 
for different grains or for different areas inside a grain, 
is similar to that in a phason-defected quasicrystal 
(Li et al., 1989). 

3. From 1D quasicrystal to 6D crystal 

3.1. The link to the 1 D quasicrystal 

The above argument leads to an assumption that 
the transformation from the tr' phase to the or phase 
may be caused by the action of a particular linear 
phason strain that acts along the fourfold axis and 
does not change the symmetry of the structure. In 
such a case the zero-phason state should be a 1D 
quasicrystal whose point-group symmetry is still 
4/mmm, where the periodicity along the fourfold axis 
breaks down and is replaced by a quasiperiodicity, 
which may, for instance, obey the golden ratio 7 
[ ' r=(1+51/2)/2].  Under the action of a particular 
linear phason strain this fictitious 1D quasicrystal 
would transform to the or' phase and then to the tr 
phase. In general, a 1D quasicrystal can easily be 
obtained by cutting a four-dimensional (4D) periodic 
crystal. But in the present case one cannot expect to 
obtain a 1D quasicrystal that is related to the or' and 
tr phases in a 4D crystal. In the following it will be 
shown that such a 1D quasicrystal can be obtained 
by cutting a 6D crystal. 

3.2. Derivation of  6 D periodic structure 

A Cartesian coordinate system is used in the phy- 
sical space Ell with unit vectors a~, a~ and a~ along 
the coordinate axes X, Y and Z respectively. From 
Feng et al. (1990), a set of six bases bll (i = 1 to 6) 
may be constructed in this space to describe the 1D 
quasicrystal and which can be related to the Cartesian 
coordinate system as follows: 

b~ = (ao/3)(1, 0, 0), 

b~ = (a0/3)(0, 1, 0), 

b] = ao(0, 0, - A ) ,  

b~ = (ao/3)(1, 1, 0), 

b~ = (a0/3)(-1,  1, 0), 

b~ = ao(0, 0, Az2). 

(1) 

With the six bases constructed here, the generators 
of the point group 4/mmrn {E, 4[001], m(100), 
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Fig. 1. (a)  A set o f  EDPs o f  the commensurate tr phase taken along different zone axes covering an orientational triangle. (b) A set 
o f  simulated EDPs o f  commensurate cr phase, which correspond to the zone axes in (a) .  The calculations are based on the 1D 
phason-defected quasicrystal with a = - 0 . 2 3 6 .  



m(001)} are represented by the matrices 
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and {E} is a unit matrix. These matrices form a 6D 
representation of the point group 4/mmm. Because 
these matrices are quasidiagonalized, the 6D rep- 
resentation space could be decomposed into two 
orthogonal 3D subspaces. One is Ell and another is 
the pseudospace E±. A Cartesian coordinate system 

x a~ and z is also used in E± with unit vectors a i ,  a± 
along the axes X±, Y~ and Z± respectively. By combi- 
nation of the Cartesian coordinate system in both Ell 
and E±, an orthogonal coordinate system in 6D space 

x a ~ ,  z x can be obtained with the unit vectors a , ,  a , ,  a ±, 
a~ and a~. In 6D space, a periodic lattice can be 
constructed such that the components of its bases Bi 
( i =  1 to 6) in the physical space E, are coincident 
with bll mentioned above, while in pseudospace 
the bases b~ are in the form 

b~ = (ao/3)(-1 ,  1, 0), 

b2 = ( a o / 3 ) ( - 1 , - 1 ,  0), 

I)3j_ = ao(0, 0, 21/2Ar3), 

b1=(ao /3 ) ( l ,  O, 0), 

bS,=(ao/3)(O, I, 0), 

b 6 = ao(O, O, -21~2At). 

(3) 

In this way, a simple form of the 6D periodic lattice 
that can be related to the or' and or phases as shown 
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Fig. 2. A set of  EDPs of  the incommensurate or' phase taken along (a) [100], (b) [410] and (c) [110] and the corresponding simulated 
patterns (d),  (e) and ( f )  calculated with (7=-0 .2 .  
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later has been obtained with its bases written as and 

a l  

B2 
B3 
B4 
Bs 
B6 

a o  ~ m  

3 

1 0 0 

0 1 0 

0 0 - 3 A  

1 1 0 
- 1  1 0 

0 0 3 A t  2 

-1  1 0 a~ 
- 1  - 1  0 a~' 

0 0 3 x 21/2A'r 3 a~ 
x 1 0 0 a± 

0 1 0 a y 
0 0 -3x2~/2A~ " a~ 

b~,* = (1 / ao ) ( -1 ,  1,0), b4* = (1/ao)(1, O, 0), 

b~* = ( 1 / a o ) ( - 1 , - 1 , O ) ,  b~* = (1/ao)(O, 1, 0), 

b 3, = ( 1 / ao)(O, O, 2- U2pT"2), 

b 6. = (1/ao)(O, O, 2-~/2p), 

(6b) 

where ao = 9.07/~ is the lattice parameter  of the tr 
and tr' phases along the [100] direction and p =  
ao/Co = 0.414. Fig. 3 shows the configurations of bases 
bil* and b~* in EI~ and E* respectively. 

The 6D periodic structure could be described by 
the function 

= p  a l  
a~_ 
a y 

(4) 

The 6D periodic lattice is represented by the lattice 
function Lo(rll , rll), which consists of 8 functions with 
their centers at the nodes R = (RII , RII ). Based on the 
reciprocal principle Bi" B* = 80, the bases of  the 6D 
reciprocal lattice can be written in the form of  their 
components  in the reciprocal subspaces E I~ and E*" 

a~'* 
a~* 
a~.* 
a~* 
a~.* 

(5) 

I 
Bm* 1 0 0 -1  1 0 
B* ~0 1 0 -1  -1  0 
B* 1 ' 0 0 p'r 0 0 2-1/2p'/"2 

B* =~oo 1 1 0 1 0 0 
B* -1  1 0 0 1 0 
B*6 , 0 0 p'r 3 0 0 2-1/2p 

\aT 

Here, P * =  ( p - 1 ) r  (where T denotes the transpose)  
and p = 1/[Az2(~'2+ 1)]. There are six bases in both 
reciprocal subspaces EI~ and E* .  They are 

b~* = (1/ao)(1, 1, 0), 

b~* = (1 / ao ) ( -1 ,  1, 0), 

b~* = (1/ao)(O, O, p'r 3) 

(6a)  

b~* = (1/ao)(1,  O, 0), 

b~* = (1/ao)(O, 1, 0), 

b]* = (1/ao)(O, O, p'r), 

po(rll, r±) = 8(r±)* Lo(rll, r±)* ~o(rll, r±), (7) 

where all lattice nodes have a definite shape along 
E± described by the window function S(r±) and the 
atomic decorat ion in the 6D unit cell is described by 
the function tpo(rll , r±). The shape of hyperatoms in 
the pseudospace  E± is also described by the function 
S(r±). 

bl 

(a) 

r 

xJ 
. . . . . . .  btt* 

(b) 

Fig. 3. The configuration of six bases (a) bli* and b~* in the 
reciprocal spaces EI~ and E*~, respectively. 
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3.3. Cutting the 6 D periodic structure 

The cut method was first proposed by de Wolff 
(1977) for describing incommensurate modulated 
structure. After the discovery of quasicrystals 
(Shechtman et al., 1984) it has been widely used for 
describing quasicrystals (Kramer & Neri, 1984; 
Kalugin, Kitaev & Levitov, 1985; Duneau & Katz, 
1985; Elser, 1986). The p.hason-defected quasicrystal 
structure formulation given by Li & Cheng (1990) 
was also based on the cut description. 

The section of the 6D periodic structure described 
by (7) that is cut by the 3D physical space Ell gives 
the 3D structure with point-group symmetry of 
4/mmm and 1D quasiperiodicity along its four- 
fold axis. The Fourier transformation of this 1D 
quasiperiodic structure in the 3D physical space can 
be obtained by projecting the 6D reciprocal lattice 
onto the physical reciprocal space EI~. The projected 
reciprocal vectors GII in the reciprocal physical space 
EI~ can be obtained by using the formula 

G,,=/C!/ 
\G,,/ 

(i 0 0 - '  00) _ _ 1  1 0 1 1 

ao 0 pr  0 0 p'r 3 

nl 

n2 

n3 

/I 4 

/15 

tl 6 

1 
= - -  PI~ 

ao 

nl  

n2 

n3 

n4 ' 

n5 

n6 

(8) 

where PI~ is the projection matrix. Thus every diffrac- 
tion spot can be indexed by six indices (n,, n2, n3, 
n4, ns, n6), which are constrained by nl+nE+n3 = 
even and n4+ n5 + n6 = even. The structure factors of 
the 1D quasiperiodic structure in Ell is expressed as 
(Li & Wang, 1988; Yamamoto & Hiraga, 1988; Li & 
Cheng, 1990): 

FGI l = s(Gj_)Fo(Gll, G~), (9) 

where Fo denotes the structure factor of the 6D struc- 
ture and is equal to the Fourier transform of the 
function tp(rll , r±); s(Gj_) is the Fourier transform 
of the shape function S(rj_) of lattice nodes and 
the hyperatoms. G± denotes the projection of 6D 

reciprocal vectors onto pseudospace E*,  

\c.t/ 

( ,1 ° 1°°0) 
_ _ 1  1 - 1  0 0 1 

ao 0 0 2-1/2pr2 0 0 2-'/2p 

nl 

n2 

n3 

/'/4 

I/5 

r/6 

nl  

n2 

_ l__ p ,  n3 
ao n4 

n5 

n6 

where P* is the projection matrix. 

(10) 

3.4. Determination of  the size of the hyperatoms 

For simplicity, the shape of hyperatoms in pseudo- 
space is assumed to approximate a sphere with radius 
re, which is an adjustable parameter and can be 
determined by fitting the EDPs of the 1D quasicrystal 
to those of the tr phase. Since the structures of the tr 
and tr' phases are unknown, the atomic decoration 
is ignored in the following. 

Fig. 4 shows the calculated EDPs of the fictitious 
1D quasicrystal for the [001], [100] and [110] zone 
axes, respectively. In the EDP of the [001] zone axis 
(Fig. 4a), the pattern is periodic and has fourfold 
symmetry. In the EDPs of the [100] and [110] zone 
axes (Figs. 4b, c), the arrangement of diffraction spots 
obeys the golden ratio along the horizontal (direction 
parallel to the fourfold axis), but shows periodicity 
along the vertical direction. The calculated pat- 
terns confirm that the constructed 1D quasicrystal is 
really a tetragonal 1D quasicrystal with point group 
4/ mmm. 

4. Description of  ~ '  and ¢r phases as phason-defected 
1D quasicrystals 

The linear phason strain in a quasicrystal is described 
by a second-rank tensor, which can be expressed as 
a 3 x 3 matrix. In the present case, the action of the 
linear phason strain is along the fourfold axis and 
the strain strength is uniform everywhere. Therefore, 
the phason-strain matrix is expressed as 

M =21/2 0 . (11) 

0 
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By the action of this linear phason strain, the diffrac- 
tion spots of the 1D quasicrystal are displaced to 
form new reciprocal vectors GII in EI~ (Lubensky et 
aL, 1986): 

Gil = GII + MG± 

1( 0 0 1 1 0 )  
= - -  1 0 1 1 0 

ao 0 p-r(l+-ra) 0 0 p ( ' r 3 + o ~ )  

n l  

/12 

/13 . 

/14 

/15 

n6 

(12) 

The phason-defected bases in EI~ are now represen- 
ted by 

b~*' : (I/a0)(1, 0, 0), 

b~* ' :  (1/ao)(0, 1, 0), 

b]*':(1/ao)(O,O,q), 

b~*'  = ( I / a 0 ) ( 1 ,  1, 0),  

b~* '  = ( I / a . ) ( - 1 ,  1, 0),  

b~l*' = (1 /ao)(O,  O, 4 r ) ,  

(13) 

where q=pT-(l+za) and r=p(~'3+a)/4. 
When a = -0.2,  the 1D quasicrystal transforms into 

the 1D incommensurate tr' phase. Figs. 2(d), (e) and 
( f )  are the simulated EDPs of the phason-defected 
1D quasicrystal with a = - 0 . 2  for the [100], [410] 
and [110] zone axes respectively. They are generally 
in agreement with those of the o-' phase (Figs. 2a, b,c). 
When a =-0 .236 ,  q/r becomes a rational number 
(=1) and the 1D quasicrystal transforms into the 

commensurate tetragonal o- phase. The simulated 
EDPs of the 1D phason-defected quasicrystal with 
a =-0 .236  of different zone axes are shown in Fig. 
1 (b). They are in agreement with those of the o- phase 
(Fig. la) .  

The agreement of simulated EDPs of the 1D 
phason-defected quasicrystal with those of the o-' and 
o- phases indicates that the structure of the com- 
mensurate o- phase and its related incommensurate 
or' phase can be described as the phason-defected 1D 
quasicrystal. In such a case, the incommensurate o-' 
phase is an intermediate state between the 1D quasi- 
crystal and the o- phase, but the o-' phase is closer to 
the o- phase than to the artificial 1D quasicrystal. 

Because all the simulated EDPs are obtained by 
ignoring the atomic decoration, it is expected that the 
agreement of simulated EDPs with the experimental 
EDPs will become closer when the atomic decoration 
is taken into consideration. For instance, the diffrac- 
tion-spot size in the simulated EDPs will decrease 
with the increase of the spatial frequency so that the 
simulated EDPs will be a better fit to the experimental 
ones. 

5. Discussion and concluding remarks 

In the constructed 6D lattice, with the exception of 
bases B 3 and B6, the bases are perpendicular to each 
other and have the same length: Bases B 3 and B6 a r e  

not perpendicular to each other but they are perpen- 
dicular to all other bases. Their lengths differ from 
each other and also from the other four bases. The 
case for the 6D reciprocal lattice is exactly the same. 
The existence of diffraction conditions n~ + n2+ n3 = 
even and n4+ ns+/16 = even indicated that the 6D 
periodic lattice with bases B~ is not a simple lattice. 
There are four lattice nodes [ (0 ,0 ,0 ,0 ,0 ,0 ) ,  
(½,½,½,0,0,0), (0,0,0,½,½,½) and (½, ~, ½, ½, ½, ½)] in 
one unit cell. 

• • 0 • • 

• • O • • O • • 

O o  o 0 o  ~ 0  
• • 0 • • 0 • • 

• 0 • • 0 • * 0 • 

) o  o 0 o  o 0 o  o C  
, 0 • • 0 • • 0 • 

• • 0 • • 0 • • ( 

o 0 o o 0 o o 0 o  
• • 0 • • 0 * • ( 

• 0 * • 0 • • 0 • 

) o  o 0 o  o 0 o  o C  
• 0 • • 0 • • 0 • 

• • O • • O • • 

0 o o 0 o o 0  
• * 0 • • 0 * • 

• • 0 • • 

v • ~ -  ~ 0 . . - o - . . 0 ~  o .o o 0 - • 0  O .  0 oO 
O . e . ,  0 . o  o .  0 • . e . O  ¢ O "  0 " ~ ' 0  

0 Oo o O  ~ " ~  ~ u " u  o ~ o .  o . ~ .  o 
O . e . e  0 • 0 0 .  0 • . o . 0  

o .o  o .o . .  o ..0. o o . .  o O ' • O O o O o O  
• 0 o o 0 - 0 0 ,  0 o o 0  • ~ ~ .  o . ~ . o  

e .  0 0 . o . .  0 . . o .  0 0 . o  

0 . * . •  0 . o  o .  0 • . o . 0  ¢ O "  0 " ~ ' 0  

oO. .OOoO*O0 . .Oo  oO. .OooOoo 
O - e . •  0 • 0 0 .  0 • . o . 0  

¢ 0 . 0 . ~ . 0  
e .  0 0 . o . .  0 o . o .  0 0 .o  

• 0 o o 0 0 0 0 - 0 o o 0  • ~ o .  o . ~ . o  
• . o  o .0 . .  o . . . . o  o . .  n n . • n n o n o n  

0 . o . •  0 • 0 0 .  0 , . o - 0  

0 . . 0  O .  0 oO 0 • . 0  o ~ ~ .  o . ~ -  o 0 
0 . o - •  0 . o  o .  0 . . o . 0  ¢ O "  0 " ~ ' 0  

o. 0 0 .o . *  0 * .o .  0 0 .o 
. ~ ~ . ~ _  ~ ^ ~  . O ~ - • N ~ o N o n  

0 " 0 o  
• ' 0 0 .  

• , 0 0 .  

0 • ' 0 o  
• ' 0 0 .  

• , 0 0 .  

0 • ' 0 o  
• , 0 0 .  

• , 0 0 .  

0 • ' 0 o  
• ' 0 0 .  

• ' 0 0 .  

N * . N  n 

(a) (b) (c) 

Fig. 4. The calculated EDPs of a 1D fictitious tetragonal quasicrystal for the (a) [001], (b) [100] and (c) [110] zone axes. 
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Another set of 6D bases in both real and reciprocal 
6D s ~ace can be selected: 

B~ 
B~ 
B~ 
B~ 
B~ 
B~ 

a o  

6 

1 - 1  - 3 A  0 2 3 x 2 ~ / 2 A z  2 

1 - 1  3A  0 2 - 3 x 2 1 / 2 A ~  "2 

0 2 0 - 2  - 2  0 
2 0 3 A t  2 1 - 1  -3x21/2A1" 

2 0 - 3 A ~  "2 1 - 1  3 x 21/2A~ " 

- 2  2 0 0 2 0 

a~ 
a~ 
a~ 
a~. 
a~ 
a~_ 

(14a) 

Among the six bases in physical space EI~, only 
four bases are independent for the case of the 1D 
incommensurate structure (tr'). A system of four bases 
could be presented for this case: 

a*=(1/ao)(1, O, O) 

a* = (1/ao)(O, 1, O) 
(15) 

a* = (1/ao)(0, 0, 8 r -  q) 

a*=(1/ao)(O,O,  4 r - q ) .  

All diffraction spots of the tr' phase can thus be 
indexed by four indices (hkl~/2). The relation between 
bli*'(i = 1 to 6) and a * ( j =  1 to 4) is 

b~*' 
b~* 
bi*' 
bll*' 
b~* 
b~* 

1 0 0 0 
0 1 o ~ /a,*\ 
0 0 1 - /a,/ 

= 1 1 0 i ~a* ] '  (16) 
-1  1 0 \ a * ]  

0 0 1 - 

indices (hklll2) and the relation between the 

and 

B~*~ 

B~*| 
B;*/ 
B~*/ 

1 

ao 

1 0 p~" - 1  1 2-1/2p'r 2 \ 

, 0 1 1 

o ] 1 1 0 - 2  0 
1 1 p'l "3 1 0 2-1/2p I 
1 1 --p'r 3 1 0 - - 2 ~ / 2 p ]  

0 2 0 1 1 (a) 

r 

x a~ (14b) 
aT_ 
a~ 
al 

Fig. 5 gives the configuration of the components of 
B~* (i = 1 to 6) in physical and pseudospaces, respec- 
tively. Based on this set of bases, for which there is 
no extinction condition, the simulated EDPs give the 
same results as those with the first set of bases and 
diffraction condition. This indicates that the lattice 
with bases BI is equivalent to that with bases Bi but 
the former is a simple lattice. The bases B~ form a 
unit cell with lower symmetry than that formed by Bi. 

l *  p Z~_ b j_ 

b 

~ 2. S 
.k 

X 
(b) 

Fig. 5. Another set of bases (a) bil*' and (b) b~*' in EI~ and E~*, 
respectively. 
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(nln2n3n4nsn6) can be written as 

h = nt + n 4 -  n5 

k = n2 + n4 + n5 
(17) 

It = n 3 "31- n6 

12 = --2n 3 -- n6. 

Previously the diffraction spots of  the o-' phase were 
indexed on the bases of  the incommensura te  com- 
posite structure (Cheng et al., 1991). After carefully 
analyzing the s imulated and experimental  EDPs of  
the tr' phase,  the sublattice parameter  of  substructure 
II along the c direction should be doubled  to c2= 
7.42/~. Thus,  the four indices hklll 2 based on a 
phason-defected 1D quasicrystal  are coincident  with 
those based on the 1D incommensura te  composi te  
structure. This confirms once again that the descrip- 
tion proposed in the present paper  is equivalent  to 
the regular description. 

In pr incipal ,  such a description is general ly 
appl icable  for all 1D incommensura te  composi te  
crystals. 

As a conclusion,  the incommensura te  composi te  o-' 
phase is described as the intermediate  state between 
a fictitious 1D tetragonal quasicrystal and  the com- 
mensurate  o- phase. In other words, the incommensu-  
rate o-' phase  and commensura te  o- phase can be 
treated as a phason -de fec t ed  1D quasicrystal  
a l though the 1D quasicrystal  is fictitious and has not 
been found in the A1-Cu-Fe  alloy thus far. This 
implies that  the incommensura te  composite structure 

that shows two independen t  periodicit ies along the 
same direction may have some inherent  relation with 
quasiperiodicity.  

YFC thanks Professor Renhui  Wang and Dr J G 
Wen for useful discussions. 
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Abstract 
A homogeneous  distr ibution of  SiO2 precipitates 
in Czochralski-grown silicon containing different 
amounts  of  oxygen were produced by annea l ing  the 
dislocation-free crystals at 1023 K. The resulting long- 

* Present address: Seikei University, Department of Economics, 
Kichijojikita-machi 3-3-1, Musashino-shi, Tokyo 180, Japan. 
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range strain field modifies the integrated reflecting 
power R of  the Bragg reflections measured  on an 
absolute scale with 316 keV y-radiat ion.  The thick- 
ness dependence  of  R has been model led  using the 
results of  statistical dynamica l  theory. The assump- 
tion made  in Kato 's  original theory, where the correla- 
tion length F for the wave-field ampli tudes  is propor- 
tional to the extinction length, has to be abandoned .  
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